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Abstract
The analytic expression for the two-electron integral of electron–ion scattering
is re-examined carefully in terms of Appell’s functions and Horn’s functions.
We study several analytic formulae in order to find actual programming code
for the multipole transitions on electron–ion collisions.

PACS numbers: 0230R, 0210, 0210S, 2320, 2320J

1. Introduction

A cross section accuracy of better than 20% for electron impact excitation of ions is desired
for various applications in fusion research, astrophysics and atmospheric physics. So far,
many elaborate calculations have been carried out for ionic stages by using methods such as
the close-coupling calculation or the R-matrix method. However, the Coulomb–Born and
Coulomb–Born–Oppenheimer approximations [1] are still useful methods for estimating the
cross sections for high incident energies. Nakazaki [2] and Takagishi et al [3] presented radial
integrals, which were expressed in terms of hypergeometric functions in the Coulomb–Born
calculations of the excitation of positive ions by electron impact. They obtain expressions
for the monopole and dipole terms only. Other multipole integrals are necessary to obtain
various excitation cross sections, such as quadrapole transitions. Alder et al [4] have studied
nuclear structures by an electromagnetic excitation with accelerated ions. For excitations
of higher multipole orders, they showed the matrix elements involving the scattering states
of the projectile can be expressed in terms of generalized hypergeometric functions of two
variables, the so-called Appell function F2(α, β, β

′, γ, γ ′; x, y). Unfortunately, the analytic
expression of the radial integral cannot be applied directly for Coulomb scattering because
the convergence condition |x| + |y| < 1 of the Appell function does not hold. Swamy
et al [5] studied the symmetry properties of the nonrelativistic Coulomb field problem and
derived some relationship between radial integrals with respect to the multipole operator
r−q . Ramaker [6] described how to evaluate the seven basic one-centre two-electron integrals
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without the reduction of the matrix elements. He pointed out the seven different integrals could
be evaluated by a single method in terms of a somewhat similar triple series:

S(α, α′, β, β ′, γ, γ ′; x, y, z) =
∑
λ,ν,υ

α′
λαν+υβυβ

′
λ+υ

γυγ
′
λ+υλ!ν!υ!

xνyυzλ.

He then presented a general expansion for F2(α, β, β
′, γ, γ ′, x, y) in terms of the Appell

function F1(a, b, b
′, c, y, y/(1 − x)). However, his method cannot be applied directly when

|y| > 1 or |y/(1 − x)| > 1 because the arguments a, b and b′ become complex numbers in the
present case, and the convergence condition for each F1 function does not hold. Ancarani and
Hervieux [7] studied the recurrence formulae and the WKB approximations for the Coulomb
integrals.

The purpose of the present paper is to express the radial integrals in the Coulomb–Born
approximation in terms of analytic expressions, which are valid for various incident energies
and any partial wave, for the multipole transitions where the atomic radial functions are
represented analytically as a linear combination of Slater type orbitals. The present method is
applied to obtain the radial integrals, which are necessary to obtain the cross sections for the
2s → 3p, 2s → 3d and 2p → 3d transitions with O7+. The present results are compared with
others which are evaluated numerically.

2. The radial matrix elements for Coulomb scattering

In electron–ion scattering theory, one must evaluate the radial Coulomb integral, such as

M
−λ−1,q
lf li

= 1

kfki

∫ ∞

0
Flf (kfr)r

−λ−1 exp (−qr)Fli(kir) dr (1)

where the function Fl(kr) is the regular Coulomb wave function for angular momentum l,
wave number k and q � 0:

Fl(kr) = |�(l + 1 + iη)|
2�(2l + 2)

e−ηπ/2(2kr)l+1e−ikr
1F1(l + 1 − iη, 2l + 2, 2ikr). (2)

Alder et al [4] obtained the analytic expression for the radial Coulomb integral as follows:

M
−λ−1,q
lilf

= |�(li + 1 + iηi)||�(lf + 1 + iηf)|
(2li + 1)!(2lf + 1)!

(li + lf − λ + 1)!

×ili+lf −λ+2xli(−y)lf e−(ηi+ηf )π/2(ki − kf + iq)λ−2

×F2(li + lf − λ + 2, li + 1 + iηi, lf + 1 − iηf , 2li + 2, 2lf + 2; x, y) (3)

where ην is the Sommerfeld parameter (Z − 1)/kν (ν = i or f) for the nuclear charge Z of the
target ion and

ξ = ηf − ηi ην = Z − 1

kν
x = 2ηf

ξ + iqηi/kf
y = −2ηi

ξ + iqηi/kf
. (4)

Then they obtained several useful analytic expressions as a finite sum of terms each involving
Appell’s functions F2 and F3 for q = 0. Unfortunately, their most general expression in
equation (IIB.62) of [4] has some errors. Therefore we re-examine the radial integral and
derive the more general expression (q � 0), which leads to the correct limit at q = 0. The
variables x and y are dependent on the incident energy, the Coulomb phase and q. For
q > 0, some cases, such as |x| > 1 > |y|, arise for particular q if the collision energy is
fixed; the expressions in terms of the Appell functions F2 and F3 cannot be evaluated directly.
Ramaker [6] pointed out that Appell’s function F3(α, α

′, β, β ′, γ ; x, y) should be expressed
by a sum of two Horn functions H2(α, β, γ, δ, ε; x, y) if either one of the arguments x and y
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was large and the remaining argument was small. Then he stated the transformation between
F3 and H2. However, his transformation is not applicable, since one of the pre-factors of the
Horn function H2 becomes proportional to �(−2lf − 1). Further deduction must be required.
Therefore we present new analytic formulae for the equation (1) in terms of F2 and H2.

2.1. General expression for |x|, |y| > 1

Equation (3) cannot be reduced to a single Appell function F1 if |li − lf | 	= λ. Thus Alder et al
used the analytic continuation formula of F2 as follows:

F2(li + lf − λ + 2, li + 1 − iηi, lf + 1 + iηf , 2li + 2, 2lf + 2; x, y)
= �(−li − iηi)�(−lf + iηf)�(λ − li − lf − 1)

�(λ + 1 + iξ)�(−2li − 1)�(−2lf − 1)
(−x)−li−1+iηi(−y)−lf −1−iηf

×F3(li + 1 − iηi, lf + 1 + iηf ,−li − iηi,−lf + iηf , λ + 1 + iξ ; 1/x, 1/y)

−�(2lf + 1)�(−lf + iηf)�(λ − li − lf − 1)

�(−2lf − 1)�(lf + 1 + iηf)�(λ − li + lf)
(−y)−2lf −1

×F2(li − lf + 1 − λ, li + 1 − iηi,−lf + iηf , 2li + 2,−2lf; x, y)
−�(2li + 1)�(−li − iηi)�(λ − li − lf − 1)

�(−2li − 1)�(li + 1 − iηi)�(λ − lf + li)
(−x)−2li−1

×F2(lf − li + 1 − λ,−li − iηi, lf + 1 + iηf ,−2li, 2lf + 2; x, y)
− �(2li + 1)�(2lf + 1)�(λ − li − lf − 1)�(−li − iηi)�(−lf + iηf)

�(−2li − 1)�(−2lf − 1)�(li + lf + λ + 1)�(li + 1 − iηi)�(lf + 1 + iηf)

×(−x)−2li−1(−y)−2lf −1F2(−li−lf − λ,−li − iηi,−lf+iηf ,−2li,−2lf; x, y).
(5)

The signs of the coefficients with the F2 functions on the right-hand side are different from
equation (IIB.61) of [4] because Alder’s original equation has the wrong signs; equation (5)
can be derived from Alder’s original formula (IIE.99) of [4].

This equation is singular for integer values of li and lf . Therefore Alder et al assumed li
and lf to have noninteger values while preserving li − lf as an integer. The third F2 function
can be eliminated by considering the complex conjugate equation to (5), which contains the
same F2 functions, according to the following Kummer type transformation [4, 8]:

F2(α, β, β
′, γ, γ ′; x, y) = (1 − x − y)−α

×F2(α, γ − β, γ ′ − β ′, γ, γ ′; x/(x + y − 1), y/(x + y − 1)). (6)

After this elimination, one must take the limit of li, lf approaching integer values. Then we
obtain the following expression for the radial matrix element:

M
−λ−1,q
lilf

= x−li−1(−y)lf
|�(lf + 1 + iηf)|(2li)!

|�(li + 1 + iηi)|(2lf + 1)!(λ + li − lf − 1)!
ili−lf +λ−1

×(ki − kf + iq)λ−2 πeξπ/2

sinh πξ

×F2(lf − li + 1 − λ,−li + iηi, lf + 1 − iηf ,−2li, 2lf + 2; x, y) + xli(−y)−lf −1

× |�(li + 1 + iηi)|(2lf)!
|�(lf + 1 + iηf)|(2li + 1)!(λ − li + lf − 1)!

i−li+lf +λ+1

×(ki − kf + iq)λ−2 πe−ξπ/2

sinh πξ

×F2(li − lf + 1 − λ, li + 1 + iηi,−lf − iηf , 2li + 2,−2lf; x, y)
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+ili+lf +λxl
i (−y)lf

|�(lf + 1 + iηf)|
|�(li + 1 + iηi)|

2πe−(ηi+ηf )π/2

sinh πξ

×(ki − kf + iq)λ−2(1 − x − y)−(li+lf −λ+2)/2
R

{
i(1 − x − y)(li+lf −λ+2)/2

× �(lf + 1 − iηf)

�(li + 1 − iηi)�(λ + 1 − iξ)
(−x)−li−1−iηi(−y)−lf −1+iηf

×F3(li + 1 + iηi, lf + 1 − iηf ,−li + iηi,−lf − iηf , λ + 1 − iξ ; 1/x, 1/y)

}

|li − lf | 	= λ. (7)

In order to obtain good convergence in the series expansion of the functions F2 and F3, we use
the Kummer type transformation [4, 8]:

F2(α, β, β
′, α, α; x, y) = (1 − x)−β(1 − y)−β ′

2F1(β, β
′, α; xy/(1 − x)(1 − y)) (8)

F2(α, β, β
′, γ, α; x, y) = (1 − y)−β ′

F1(β, α − β ′, γ ; x, x/(1 − y)) (9)

F1(α, β, β
′, γ ; x, y) = (1 − y)−β ′

F3(α, γ − α, β, β ′, γ ; x,−y/(1 − y)). (10)

For the case li = lf ± λ, and lf = l, the Appell function F2 in equation (3) can be written as
follows:

F2(2l + 2, l ± λ + 1 + iηi, l + 1 − iηf , 2l ± 2λ + 2, 2l + 2; x, y) = (1 − y)−l−1+iηf

×F1(l ± λ + 1 + iηi, l + 1 − iηf , l + 1 − iηf , 2l ± 2λ + 2; x, x/(1 − y))

= (1 − x − y)−l−1+iηf F3(l ± λ + 1 + iηi, l ± λ + 1 − iηi, l + 1

+iηf , l + 1 + iηf , 2l + 2; x, x∗) = eηfπ (−x)−2l−2 (2l ± 2λ + 1)!

|�(l ± λ + 1 + iηi)|2 (−1)l+1

×
{

2R
�(l ± λ + 1 + iηi)�(−λ + iξ)

�(l + 1 + iηf)

(
− 1

x

)λ−iξ

F2(−λ + 1 − iξ, l ± λ + 1

+iηi, l + 1 − iηf , λ + 1 − iξ,−λ + 1 − iξ ; 1/x, 1/x∗) +
|�(λ − iξ)|2
(2λ − 1)!

×F2(−2λ + 1, l + 1 + iηf , l + 1 − iηf ,−λ + 1 + iξ,−λ + 1 − iξ ; 1/x, 1/x∗)
}
.

(11)

These Appell functions can be evaluated by the following convergent series [4, 8]:

F1(α, β, β
′, γ ; x, y) =

∑ (α)m+n(β)m(β
′)n

(γ )m+nm!n!
xmyn for |x| < 1 and |y| < 1 (12)

F2(α, β, β
′, γ, γ ′; x, y) =

∑ (α)m+n(β)m(β
′)n

(γ )m(γ ′)nm!n!
xmyn for |x| + |y| < 1 (13)

F3(α, α
′, β, β ′, γ ; x, y) =

∑ (α)m(α
′)n(β)m(β ′)n

(γ )m+nm!n!
xmyn for |x| < 1 and |y| < 1 (14)

where (a)n(= �(a + n)/�(a)) is the Pochhammer symbol.
Our transformation (5) leads to the similar expression of M

−λ−1,q=0
l,l derived by Alder et

al. Applying equation (8) to (3), and then taking the limit of li = lf = l and ki = kf = k, we
obtain the matrix elements:

M
−1,q
ll = |�(l + 1 + iη)|2

(2l + 1)!

1

4k2

(
4k2

q2 + 4k2

)l+1

e(2θ−π)η

×2F1(l + 1 + iη, l + 1 − iη, 2l + 2; 4k2/(q2 + 4k2)) θ = tan−1(2k/q).

(15)
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2.2. General expression for |x| < 1 < |y| or |y| < 1 < |x|
Erdélyi [9] studied several generalized hypergeometric functions. He derived the relation
between the Horn function H2 and Appell function F2 by means of these integral
representations:

H2(α, β, γ, δ, ε; x, y) = �(1 − α)�(δ − γ )

�(1 − α − γ )�(δ)
y−γ F2(α + γ, β, γ, ε, 1 + γ − δ; x,−1/y)

+
�(1 − α)�(γ − δ)

�(1 − α − δ)�(γ )
y−δF2(α + δ, β, δ, ε, 1 + δ − γ ; x,−1/y). (16)

This equation can be applied directly to the F2 function in equation (3) if |x| < 1 < |y| as
follows:

F2(li + lf − λ + 2, li + 1 + iηi, lf + 1 − iηf , 2li + 2, 2lf + 2; x, y)
= (−1)lf −li+λ

(2lf + 1)!

(li + lf − λ + 1)!

{
�(−lf − iηf)

�(λ − li − iηf)
(−y)−lf −1+iηf

×H2(li − λ + 1 + iηf , li + 1 + iηi,−lf − iηf , lf + 1 − iηf; 2li + 2; x,−1/y)

− �(−lf − iηf)(2lf)!

�(lf + 1 − iηf)(λ − li + lf − 1)!
(−y)−2lf −1

×F2(li − lf − λ + 1, li + 1 + iηi,−lf − iηf , 2li + 2,−2lf; x, y)
}
. (17)

When |x| > 1 > |y|, we can use the property of the F2 function as follows:

F2(α, β, β
′, γ, γ ′; x, y) = F2(α, β

′, β, γ ′, γ ; y, x) (18)

since the F2 function is defined by equation (13). Finally we obtain the corresponding
expression for |x| > 1 > |y|:
F2(li + lf − λ + 2, li + 1 + iηi, lf + 1 − iηf , 2li + 2, 2lf + 2; x, y)

= (−1)li−lf +λ (2li + 1)!

(li + lf − λ + 1)!

{
�(−li + iηi)

�(λ − lf + iηi)
(−x)−li−1−iηi

×H2(lf − λ + 1 − iηi, lf + 1 − iηf ,−li + iηi, li + 1 + iηi; 2lf + 2; y,−1/x)

− �(−li + iηi)(2li)!

�(li + 1 + iηi)(λ − lf + li − 1)!
(−x)−2li−1

×F2(lf − li − λ + 1, lf + 1 − iηf ,−li + iηi, 2lf + 2,−2li; y, x)
}
. (19)

In these expressions (17) and (19), both F2 functions in the right-hand side are reduced to
polynomials, while the Horn function H2 can be estimated directly by the expression:

H2(α, β, γ, δ, ε; x, y) =
∞∑
λ=0

∞∑
u=0

(α)λ−u(β)λ(γ )u(δ)u

(ε)λλ!u!
xλyu

=
∞∑
k=0

{ [k/2]∑
n=0

(−1)k(β)n(γ )k−n(δ)k−n

(1 − α)k−2n(ε)nn!(k − n)!
xnyk−n

+
k∑

n=[k/2]+1

(α)2n−k(β)n(γ )k−n(δ)k−n

(ε)nn!(k − n)!
xnyk−n

}
(20)

where [x] represents the largest integer less than x.
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F3(1/x,1/y)

eq.(7)

|y|

|x|

F2(x,y)
eq.(3)

H2(x, − 1/y)

H2(y, − 1/x)

eq.(17)

eq.(19)

1

2

210

Figure 1. The schematic diagram of various expressions for M
−λ−1,q
li,lf

(x, y). The domain
of convergence is shown by the symbols F2(F2), F3(F3) and H2(H2) with their relevant
equations, respectively. The broad grey line gives an outline of the regions defined by |1 −
Rx|

√
1 + (Ix)2/(1 − Rx)2 > |y| > |1 − Rx|, and |1 − Ry|

√
1 + (Iy)2/(1 − Ry)2 > |x| >

|1−Ry|, which corresponds to the exceptional regions where the integral expression (21) of Horn’s
function H2 is not defined. For real variables x and y, these regions become |y| = |1 − x| > |x|
and |x| = |1 − y| > |y|.

The integral representation of Horn’s function H2(α, β, γ, δ, ε; x ′, y ′) is given by
Erdélyi [10] as follows:

�(β)�(ε − β)H2(α, β, γ, δ, ε; x ′, y ′)

= �(ε)

∫ 1

0
uβ−1(1 − u)ε−β−1(1 − x ′u)−α

2F1(γ, δ; 1 − α; −y ′(1−x ′u)) du

0 < R(β) < R(ε) |x ′| < 1 |y ′| < 1 |1−x ′||y ′| < 1.

(21)

The variable ranges |x ′| < 1, |y ′| < 1 and |1 − x ′||y ′| < 1 lead to conditions such as
|y| > 1 > |x| and |y| > |1 − x|, or |x| > 1 > |y| and |x| > |1 − y| for equations (17) or (19),
respectively. The schematic diagram for the convergent domain is shown in figure 1.

3. Application, results and conclusions

We apply our new formulae to obtain the radial matrix elements, which are necessary in the
calculations for the electron-impact excitation of O7+. The resulting values are compared with
the corresponding numerical values, which are evaluated using Simpson’s quadrature.

Figures 2 and 3 give the radial matrix elements of O7+ for specific orbital angular
momentum li and lf . The excitation energy of O7+ (2s → 3p, 3d, or 2p → 3d) is 120.94 eV
and the incident energy is given in these units (threshold units). Our revised formulae are
very efficient in calculating the accurate matrix element, while Simpson’s quadrature is time
consuming since each Coulomb wave function is integrated over the radial coordinate up to
300 au with a relative accuracy less than 10−8 using the Adams’ PECE method. Our analytic
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M
L i

,L
f-λ

-1
,q

Li

O7+, Lf=Li+1, X=10

λ=1, q=0
λ=1, q=2
λ=1, q=4
λ=3, q=0
λ=3, q=2
λ=3, q=4
Simpson

1e-008

1e-007

1e-006

1e-005

0.0001

0.001

0.01

0.1

1

0 5 10 15 20

Figure 2. The radial matrix elements in electron–O7+ (2s → 3p, 2s → 3d, 2p → 3d) scattering
for λ = 1 and 3, lf = li + 1, q = 0, 2 and 4, and the incident energy at X = 10 (threshold units) as
a function of angular momentum li calculated by our analytic formula (7). The full curves show
the corresponding results of direct numerical integration (1) by Simpson’s quadrature.

0

0.5

1

1.5

2

M
L i

,L
f-λ

-1
,q

(x
,y

)

|x
| a

nd
 |y

|

O7+, λ=3, Li=1, Lf=2, q=4

Simpson
Analytic H2
Analytic F3

|x|
|y|

1e-016

1e-014

1e-012

1e-010

1e-008

1e-006

0.0001

0.01

1 1.25 1.5 1.75 2

X

Figure 3. The radial matrix elements in electron–O7+ (2s → 3p, 2s → 3d, 2p → 3d) scattering
for λ = 3, li = 1, lf = 2 and q = 4 as a function of incident energy X (threshold units) calculated
by our analytic formulae (7) and (19). The full curve shows the corresponding results of direct
numerical integration (1) by Simpson’s quadrature. The dotted curve and chaine curve show |x|
and |y| defined by equation (4), respectively.

formula (7) is tested on our personal computer using the Fujitsu FORTRAN 95 compiler,
and is 249 ∼ 5252 times faster than Simpson’s quadrature with the Adams’ PECE method
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for λ = 3, li = 0 ∼ 5, lf = 0 ∼ 5, q = 0 ∼ 5 and 3.56 < |y| < |x| < 38.98. If one
relaxes the convergence condition of the Adams’ PECE method, such as the relative accuracies
10−4 ∼ 10−5, the CPU time may be markedly decreased, while Simpson’s quadrature does
not reproduce the accurate matrix elements (7) for li > 4 [11]. In figure 3, it is shown that our
new formula (19) in terms of the Horn function works well for |x| > 1 > |y|.

We have pointed out that the most general expression of the radial Coulomb matrix element
derived by Alder et al is erroneous and present accurate analytic expressions in terms of the
generalized hypergeometric functions F3 and H2. These new formulae provide an effective
method with respect to the evaluation of the transition matrix elements for multiple terms
and higher partial waves because the convergent series (13) for F2 works well whenever
|x| + |y| < 1, while equation (7) can be used for |x| > 1 and |y| > 1, and then equation (17)
or (19) may be applied when |x| + |y| > 1. The present formulae cover important regions for
|x| and |y|. Thus it is expected we will be able to calculate the radial Coulomb integral (1)
analytically for various incident energies.
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